Identification of the strong Brønsted acid site in a metal–organic framework solid acid catalyst
نویسندگان
چکیده
منابع مشابه
Generation of a solid Brønsted acid site in a chiral framework.
Protonation of chiral porous materials introduces a Brønsted acid centre, the structure of which is unique to the heterogeneous phase requiring pore wall confinement for stable isolation.
متن کاملPhospho sulfonic acid: an efficient solid acid catalyst for the facile preparation of 1,4-dihydropyridines
A simple and mild one-pot three-component reaction for the preparation 1,4-dihydropyridines has been developed from various aldehyde substrates, 1,3-dicarbonyl compounds (dimedone) and ammonium acetate (Hantzsch method) in the presence of a catalytic amount of phospho sulfonic acid (PSA) as an efficient and heterogeneous solid acid in EtOH at room temperature. Preparation of PSA is straightforw...
متن کاملPhospho sulfonic acid: an efficient solid acid catalyst for the facile preparation of 1,4-dihydropyridines
A simple and mild one-pot three-component reaction for the preparation 1,4-dihydropyridines has been developed from various aldehyde substrates, 1,3-dicarbonyl compounds (dimedone) and ammonium acetate (Hantzsch method) in the presence of a catalytic amount of phospho sulfonic acid (PSA) as an efficient and heterogeneous solid acid in EtOH at room temperature. Preparation of PSA is straightforw...
متن کاملSilica-bonded n-propyldiethylenetriamine sulfamic acid as a recyclable solid acid catalyst for the synthesis of coumarin and biscoumarin derivatives
Silica-bonded n-propyldiethylenetriamine sulfamic acid (SBPDSA) was found as an efficient solid acid for the synthesis of coumarins. Coumarin derivatives were obtained via the Pechmann condensation reaction of phenols and β-keto-esters at 80 oC under solvent-free conditions. Also, biscoumarins were obtained via the condensation of aldehydes and 4-hydroxycoumarin in water at reflux conditions. T...
متن کاملFe3O4@silica sulfuric acid nanoparticles as a potent and recyclable solid acid catalyst for the synthesis of indole derivatives
Fe3O4 magnetic nanoparticles were synthesized by co-precipitation of Fe2+ and Fe3+ in aqueous NaOH. Then silica was coated on the obtained nanoparticles and the whole composite was functionalized with chlorosulfonic acid in CH2Cl2. The obtained nanocomposite (Fe3O4@SiO2-SO3H) was characterized by FT-IR, VSM and XRD techniques and was used as an efficient catalyst in condensation reaction of ind...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Nature Chemistry
سال: 2018
ISSN: 1755-4330,1755-4349
DOI: 10.1038/s41557-018-0171-z